Mechanical Engineering Technology—Design Major (METD)

Students in the Mechanical Engineering Technology—Design Major learn to use the latest technology to design and manufacture devices and systems for consumer products, machine tools, and the automotive and aerospace industries.

The curriculum prepares students to solve real-world problems from concept to completion using logical thinking as well as computer software, including computer-aided design (CAD) and computer-aided engineering (CAE).

The MET - Design Major is the traditional Mechanical Engineering Technology program. Graduates earn an Associate of Applied Science degree, and are well prepared to continue their education in a related engineering bachelor's degree program.

For more information, please contact the Center for Innovative Technologies at (513) 569-1743.

To apply for this program at Cincinnati State, visit the Admissions (http://www.cincinnatistate.edu/academics/admission) section of the College website.

Mechanical Engineering Technology - Computer Aided Design Certificate (METCAD)

The Mechanical Engineering Technology - Computer Aided Design Certificate assists professionals who want to upgrade their skills, and also prepares new students for entry-level jobs in the field of computer aided design (CAD).

While completing the certificate, students gain proficiency with the most popular CAD software packages used in industry, including AutoCAD, Inventor, SolidWorks, and NX.

For more information, please contact the Center for Innovative Technologies at (513) 569-1743.

To apply for this program at Cincinnati State, visit the Admissions (http://www.cincinnatistate.edu/academics/admission) section of the College website.

Mechanical Engineering Technology—Design Major (METD)

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Lec</th>
<th>Lab</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MET 100</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>MET 111</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MET 131</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ENG 101</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>FYE 1XX</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Semester 2

MET 132	MET Computer Aided Drafting 2 (T)	2	3	3
MET 140	Engineering Materials (T)	2	2	3
MET 150	Statics and Strength of Materials for MET (T)	2	3	3
ENG 10X	English Composition 1 (G)	3	0	3
MAT XXX	Mathematics Elective 1 (G)	3	2	4

Semester 3

| MET 291 | Full-Time Cooperative Education 1: Mechanical Engineering Technology (T) | 1 | 40 | 2 |

Semester 4

MET 240	Hydraulics and Pneumatics (T)	2	3	3
MET 250	Machine Design (T)	3	3	4
MET 285	Mechanical Engineering Technology Capstone Project 1 (T)	2	3	3
PHY 151	Physics 1: Algebra and Trigonometry-Based (G)	3	3	4

Semester 5

MET 260	Applied Thermodynamics (T)	2	2	3
MET 270	Kinematics (T)	2	2	3
MET 290	Mechanical Engineering Technology Capstone Project 2 (T)	2	3	3
EET 101	Electronic Fundamentals 1 (T)	2	3	3
XXX XXX	Arts/ Humanities or Social/ Behavioral Science Elective (G)	3	0	3
Semester 6
MET 292 Full-Time Cooperative Education 1 40 2
 2: Mechanical Engineering
 Technology (T)

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lec</th>
<th>Lat</th>
</tr>
</thead>
<tbody>
<tr>
<td>MET 100</td>
<td>Introduction to Mechanical Engineering Technology</td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>MET 131</td>
<td>MET Computer Aided Drafting 1</td>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>MAT 1XX</td>
<td>Mathematics Elective</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Electives

Mathematics Elective
MAT 121 Technical Algebra and Geometry with Statistics 3
MAT 125 Algebra and Trigonometry 4

Mechanical Engineering Technology

- (METD, METM)
 - Ability to conduct standard tests and measurements, and to conduct, analyze, and interpret experiments.
 - Ability to function effectively as a member of a technical team.
 - Ability to design systems, components, or processes to solve engineering technology problems.
 - Ability to identify, analyze, and solve narrowly defined engineering technology problems.
 - Ability to apply written, oral, and graphical communication in technical environments.
 - Demonstrate commitment to quality, timeliness, and continuous improvement.

Faculty

Program Chair/Advisor
Professor Michael DeVore, PhD, PE
michael.devore@cincinnatistate.edu

Co-op Coordinator
Professor Sue Dolan, M.Ed.
sue.dolan@cincinnatistate.edu

Advisors
Wendy Steinberg, MS
wendy.steinberg@cincinnatistate.edu

Carole Womeldorf, PhD
carole.womeldorf@cincinnatistate.edu

Courses

MET 100 Introduction to Mechanical Engineering Technology
2 Credits. 1 Lecture Hour. 2 Lab Hours.
An orientation to the Mechanical Engineering Technology program and the profession. Topics include: computers and software used in the profession, career opportunities, professional skills, and preparation for cooperative education.
Prerequisites: ENG 085 or MAT 120, or appropriate placement test scores

MET 111 Manufacturing Processes 1
3 Credits. 2 Lecture Hours. 3 Lab Hours.
An introduction to machining and fabrication. Topics include: measuring techniques, manual and computer numerical controlled metal removal processes, machine operations, and materials considerations.
Prerequisites: ENG 085 and MAT 120, or appropriate placement test scores
MET 112 Manufacturing Processes 2
3 Credits. 2 Lecture Hours. 3 Lab Hours.
A continuation of MET 111. Topics include: CNC programming of complex parts on two-axis mills and lathes, and CNC control.
Prerequisites: MET 111 (minimum grade C), and MET 131, and MAT 121 or MAT 125, or appropriate placement test score

MET 113 Manufacturing Processes 3
3 Credits. 2 Lecture Hours. 3 Lab Hours.
A continuation of MET 112. Topics include: CAM simulation, machining processes, prototyping techniques, and using CAD/CAM software to create programs for producing components on CNC machines.
Prerequisites: MET 112 (minimum grade C)

MET 131 MET Computer Aided Drafting 1
3 Credits. 2 Lecture Hours. 3 Lab Hours.
An introduction to mechanical drafting and computer aided drafting.
Topics include: geometric construction, orthographic projection, dimensioning, section views, and auxiliary views.
Prerequisites: ENG 085 and MAT 120, or appropriate placement test scores
Ohio Transfer Assurance Guide Approved

MET 132 MET Computer Aided Drafting 2
3 Credits. 2 Lecture Hours. 3 Lab Hours.
A continuation of MET 131. Topics include: 3D modeling, geometric dimensioning and tolerancing, and creating assembly models.
Prerequisites: MET 131 (minimum grade C)

MET 140 Engineering Materials
3 Credits. 2 Lecture Hours. 2 Lab Hours.
A course on the materials used in designing and manufacturing machinery and products. Topics include: steel and non-ferrous metals, polymers, ceramics, and composites. Students use the materials testing laboratory to study physical and mechanical properties of materials.
Prerequisites: MET 111, and MAT 121 or MAT 125 or appropriate placement test scores
Ohio Transfer Assurance Guide Approved

MET 150 Statics and Strength of Materials for MET
3 Credits. 2 Lecture Hours. 3 Lab Hours.
A course on analyzing forces that occur within machine and structural elements subjected to various types of loads. Topics include: vector analysis, free body diagrams, individual stresses, and combined stresses.
Prerequisites: MAT 121 or MAT 125 or appropriate placement test scores

MET 191 Part-Time Cooperative Education 1: Mechanical Engineering Technology
1 Credit. 1 Lecture Hour. 20 Lab Hours.
Students seeking an associate's degree participate in their first part-time field learning experience related to their degree. Students are expected to register for academic courses during the same semester. Students must follow cooperative education policies and procedures to earn credit. Grades issued are Satisfactory or Unsatisfactory.
Prerequisites: MET 100

MET 192 Part-Time Cooperative Education 2: Mechanical Engineering Technology
1 Credit. 1 Lecture Hour. 20 Lab Hours.
Students seeking an associate's degree participate in their second part-time field learning experience related to their degree. Students are expected to register for academic courses during the same semester. Students must follow cooperative education policies and procedures to earn credit. Grades issued are Satisfactory or Unsatisfactory.
Prerequisites: MET 191

MET 193 Part-Time Cooperative Education 3: Mechanical Engineering Technology
1 Credit. 1 Lecture Hour. 20 Lab Hours.
Students seeking an associate's degree participate in their third part-time field learning experience related to their degree. Students are expected to register for academic courses during the same semester. Students must follow cooperative education policies and procedures to earn credit. Grades issued are Satisfactory or Unsatisfactory.
Prerequisites: MET 192

MET 194 Part-Time Cooperative Education 4: Mechanical Engineering Technology
1 Credit. 1 Lecture Hour. 20 Lab Hours.
Students seeking an associate's degree participate in their fourth part-time field learning experience related to their degree. Students are expected to register for academic courses during the same semester. Students must follow cooperative education policies and procedures to earn credit. Grades issued are Satisfactory or Unsatisfactory.
Prerequisites: MET 193

MET 195 Part-Time Cooperative Education 5: Mechanical Engineering Technology
1 Credit. 1 Lecture Hour. 20 Lab Hours.
Students seeking an associate's degree participate in their fifth part-time field learning experience related to their degree. Students are expected to register for academic courses during the same semester. Students must follow cooperative education policies and procedures to earn credit. Grades issued are Satisfactory or Unsatisfactory.
Prerequisites: MET 194

MET 196 Part-Time Cooperative Education 6: Mechanical Engineering Technology
1 Credit. 1 Lecture Hour. 20 Lab Hours.
Students seeking an associate's degree participate in their sixth part-time field learning experience related to their degree. Students are expected to register for academic courses during the same semester. Students must follow cooperative education policies and procedures to earn credit. Grades issued are Satisfactory or Unsatisfactory.
Prerequisites: MET 195

MET 198 First Year Special Topics in Mechanical Engineering Technology
1-9 Credits. 0 Lecture Hour. 0 Lab Hour.
A course on selected topics related to Mechanical Engineering Technology, which gives students opportunities to study information not currently covered in other courses. Grades issued are A, B, C, D, or F.
Prerequisites: Instructor Approval
MET 199 First Year Independent Project in Mechanical Engineering Technology
1-9 Credits. 0 Lecture Hour. 0 Lab Hour.
A project related to Mechanical Engineering Technology that is completed by one or more students to meet specific educational goals. Projects must have prior approval and supervision by Mechanical Engineering Technology faculty. Grades issued are Satisfactory or Unsatisfactory.
Prerequisites: Instructor Approval

MET 230 Quality Control and Six Sigma
4 Credits. 3 Lecture Hours. 2 Lab Hours.
A course on modern quality methods used in manufacturing. Topics include: data collection, statistical process control, continuous improvement, and the reduction of product defects through the six-sigma process.
Prerequisites: MET 150

MET 240 Hydraulics and Pneumatics
3 Credits. 2 Lecture Hours. 3 Lab Hours.
A course on applied fluid power systems. Topics include: fluid transport, power systems components and circuits, relay logic, and ladder diagrams. Students design, build, and operate hydraulic and pneumatic circuits in the laboratory.
Prerequisites: MET 150

MET 250 Machine Design
4 Credits. 3 Lecture Hours. 3 Lab Hours.
A course on applying principles of engineering mechanics and strength of materials to the analysis and selection of mechanical components. Topics include: combined stresses, failure theories, shaft components, shaft design, and fasteners.
Prerequisites: MET 140 and MET 150 (minimum grade C for both)

MET 260 Applied Thermodynamics
3 Credits. 2 Lecture Hours. 2 Lab Hours.
A course in the engineering study of energy. Topics include: first and second laws of thermodynamics, general energy equation, Mollier diagrams, ideal cycles, steam generation and turbines, and refrigeration.
Prerequisites: MET 150, and MAT 121 or MAT 125 or appropriate placement test scores

MET 270 Kinematics
3 Credits. 2 Lecture Hours. 2 Lab Hours.
A course on analyzing mechanisms. Topics include: linear and angular displacement, velocity, acceleration, mass moment of inertia, and dynamic balance. Students use computer simulation software to analyze machine motions and forces.
Prerequisites: MET 150 and PHY 151

MET 285 Mechanical Engineering Technology Capstone Project 1
3 Credits. 2 Lecture Hours. 3 Lab Hours.
Students participate in a team design project. Topics include: feasibility study, design concepts, detail and assembly drawings, bill of materials, commercial and fabricated parts, vendors, costs, and manufacturing.
Prerequisites: MET 111 and MET 132 and MET 140 and MET 150 (minimum grade C for all)

MET 290 Mechanical Engineering Technology Capstone Project 2
3 Credits. 2 Lecture Hours. 3 Lab Hours.
A continuation of MET 285. Students manufacture, assemble, and test the product designed in MET 285, and prepare a presentation on the complete design process.
Prerequisites: MET 285

MET 291 Full-Time Cooperative Education 1: Mechanical Engineering Technology
2 Credits. 1 Lecture Hour. 40 Lab Hours.
Students seeking an associate's degree participate in their first full-time field learning experience related to their degree. Students must follow cooperative education policies and procedures to earn credit. Grades issued are Satisfactory or Unsatisfactory.
Prerequisites: MET 100

MET 292 Full-Time Cooperative Education 2: Mechanical Engineering Technology
2 Credits. 1 Lecture Hour. 40 Lab Hours.
Students seeking an associate's degree participate in their second full-time field learning experience related to their degree. Students must follow cooperative education policies and procedures to earn credit. Grades issued are Satisfactory or Unsatisfactory.
Prerequisites: MET 291

MET 293 Full-Time Cooperative Education 3: Mechanical Engineering Technology
2 Credits. 1 Lecture Hour. 40 Lab Hours.
Students seeking an associate's degree participate in their third full-time field learning experience related to their degree. Students must follow cooperative education policies and procedures to earn credit. Grades issued are Satisfactory or Unsatisfactory.
Prerequisites: MET 292

MET 294 Internship 1: Mechanical Engineering Technology
2 Credits. 1 Lecture Hour. 40 Lab Hours.
Students seeking an associate's degree participate in their first unpaid field learning experience related to their degree. Students must follow applicable policies and procedures to earn credit. Grades issued are Satisfactory or Unsatisfactory.
Prerequisites: MET 100

MET 295 Internship 2: Mechanical Engineering Technology
2 Credits. 1 Lecture Hour. 40 Lab Hours.
Students seeking an associate's degree participate in their second unpaid field learning experience related to their degree. Students must follow applicable policies and procedures to earn credit. Grades issued are Satisfactory or Unsatisfactory.
Prerequisites: MET 294

MET 298 Second Year Special Topics in Mechanical Engineering Technology
1-9 Credits. 0 Lecture Hour. 0 Lab Hour.
A course on selected topics related to Mechanical Engineering Technology, which gives students opportunities to study information not currently covered in other courses. Grades issued are A, B, C, D, or F.
Prerequisites: Instructor Approval

MET 299 Second Year Independent Project in Mechanical Engineering Technology
1-9 Credits. 0 Lecture Hour. 0 Lab Hour.
A project related to Mechanical Engineering Technology that is completed by one or more students to meet specific educational goals. Projects must have prior approval and supervision by Mechanical Engineering Technology faculty. Grades issued are Satisfactory or Unsatisfactory.
Prerequisites: Instructor Approval